Morphology and growth speed of hcp domains during shock-induced phase transition in iron
نویسندگان
چکیده
Emergence and time evolution of micro-structured new-phase domains play a crucial role in determining the macroscopic physical and mechanical behaviors of iron under shock compression. Here, we investigate, through molecular dynamics simulations and theoretical modelings, shock-induced phase transition process of iron from body-centered-cubic (bcc) to hexagonal-close-packed (hcp) structure. We present a central-moment method and a rolling-ball algorithm to calculate and analyze the morphology and growth speed of the hcp phase domains, and then propose a phase transition model to clarify our derived growth law of the phase domains. We also demonstrate that the new-phase evolution process undergoes three distinguished stages with different time scales of the hcp phase fraction in the system.
منابع مشابه
Nucleation and growth mechanisms of hcp domains in compressed iron
In our previous work, we have pointed out that the shock-induced phase transition in iron occurs with the help of interface energy which reduces the potential barrier between two phases. Here, through studying the nucleation and growth mechanisms of hcp domains in compressed iron, we find that the flatted-octahedral-structure (FOS) is the primary structural unit of the embryo nucleus and phase ...
متن کاملQuantum mechanics based multiscale modeling of stress-induced phase transformations in iron
The ground state crystal structure of Fe, ferromagnetic body-centered cubic (bcc), undergoes a stress-induced martensitic phase transformation to a hexagonally close-packed (hcp) structure. Both bcc and hcp have been observed to coexist over a large range deformations, such that the nonlinearities in the constitutive behavior of each phase need to be included for an accurate description. We pre...
متن کاملCHARACTERIZATION OF CO-FE MAGNETIC FILMS FABRICATED BY GALVANO-STATIC ELECTRODEPOSITION
In this research, nanocrystalline Co-Fe coatings were electrodeposited on copper substrate. The influence of current density on different properties of the films at two pH levels was investigated. All the coatings showed nodular structure with rougher morphology at higher current densities. Due to anomalous deposition at higher current density, the amount of iron content increased and reached i...
متن کاملEXAFS measurement of iron bcc-to-hcp phase transformation in nanosecond-laser shocks.
Extended x-ray absorption fine structure (EXAFS) measurements have demonstrated the phase transformation from body-centered-cubic (bcc) to hexagonal-close-packed (hcp) iron due to nanosecond, laser-generated shocks. The EXAFS spectra are also used to determine the compression and temperature in the shocked iron, which are consistent with hydrodynamic simulations and with the compression inferre...
متن کاملNonadiabaticity in the iron bcc to hcp phase transformation.
Iron is known to undergo a pressure-induced phase transition from the ferromagnetic (FM) body-centered-cubic (bcc) alpha-phase to the nonmagnetic (NM) hexagonal-close-packed (hcp) epsilon-phase, with a large observed pressure hysteresis whose origin is still a matter of debate. Long ago, Burgers [Physica (Amsterdam) 1, 561 (1934)] proposed an adiabatic pathway for bcc to hcp transitions involvi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014